'Python' is a high-level, general-purpose programming language that emphasises human readability and minimum use of indentation, and is frequently used in Digital Humanities projects.
This lesson covers tokenization, part-of-speech tagging, and lemmatization, as well as automatic language detection, for non-English and multilingual text. You’ll learn how to use the Python packages NLTK, spaCy, and Stanza to analyze a multilingual Russian and French text.
In this lesson, you’ll learn computer vision and machine learning principles for object recognition, and how to apply these principles using Python to recognize and classify smiling faces in historical photographs.
Word embeddings allow you to analyze the usage of different terms in a corpus of texts by capturing information about their contextual usage. Through a primarily theoretical lens, this lesson will teach you how to prepare a corpus and train a word embedding model. You will explore how word vectors work, how to interpret them, and how to answer humanities research questions using them.
This lesson demonstrates how to create interactive data visualizations in Python with Plotly’s open-source graphing libraries using materials from the Historical Violence Database.
Tools for machine transcription of handwriting are practical and labour-saving if you need to analyse or present text in digital form. This lesson will explain how to write a Python program to transcribe handwritten documents using Microsoft’s Azure Cognitive Services, a commercially available service that has a cost-free option for low volumes of use.
This lesson uses word embeddings and clustering algorithms in Python to identify groups of similar documents in a corpus of approximately 9,000 academic abstracts. It will teach you the basics of dimensionality reduction for extracting structure from a large corpus and how to evaluate your results.
This lesson demonstrates how to use the Python library spaCy for analysis of large collections of texts. This lesson details the process of using spaCy to enrich a corpus via lemmatization, part-of-speech tagging, dependency parsing, and named entity recognition. Readers will learn how the linguistic annotations produced by spaCy can be analyzed to help researchers explore meaningful trends in language patterns across a set of texts.
Google Vision and Tesseract are both popular and powerful OCR tools, but they each have their weaknesses. In this lesson, you will learn how to combine the two to make the most of their individual strengths and achieve even more accurate OCR results.
In this lesson, you will use Qt Designer and Python to design and implement a simple graphical user interface and application to merge PDF files. This lesson also demonstrates how to package the application for distribution to other personal computers.
In this lesson, you will learn how to apply a Generative Pre-trained Transformer language model to a large-scale corpus so that you can locate broad themes and trends within written text.
This is the first of a two-part lesson introducing deep learning based computer vision methods for humanities research. Using a dataset of historical newspaper advertisements and the fastai Python library, the lesson walks through the pipeline of training a computer vision model to perform image classification.
This is the second of a two-part lesson introducing deep learning based computer vision methods for humanities research. This lesson digs deeper into the details of training a deep learning based computer vision model. It covers some challenges one may face due to the training data used and the importance of choosing an appropriate metric for your model. It presents some methods for evaluating the performance of a model.